
XY model and algebraic methods

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1973 J. Phys. A: Math. Nucl. Gen. 6 1679

(http://iopscience.iop.org/0301-0015/6/11/007)

Download details:

IP Address: 171.66.16.73

The article was downloaded on 02/06/2010 at 04:41

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0301-0015/6/11
http://iopscience.iop.org/0301-0015
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J .  Phys. A :  Math., Nucl. Gen., Vol. 6, November 1973. Printed in Great Britain. 0 1973 

XY model and algebraic methods 
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Department of Physics, Queen Mary College, University of London, UK 

Received 11 May 1973 

Abstract. A systematic study of properties of a set of operators leads to a new approach to 
solve the X Y  model. The algebraic solution refers only to a subalgebra of spin operators. 
Though the connection with the algebra of related fermion operators is apparent, these 
need not be referred to. As a by-product, Onsager's method for the Ising model results in a 
very simple form, and its relationship to the approach of Schultz, Mattis and Lieb becomes 
transparent. 

1. Properties of a simple set of operators 

The X Y  model in one dimension is of a very simple structure (Lieb er a1 1961, Katsura 
1962). The eigenfunctions and eigenvalues of the symmetric hamiltonian are known as a 
special case of the Bethe solution of a more general class of Heisenberg hamiltonians, 
and at the same time a direct algebraic solution is known in terms of fermion quasi- 
particle operators. The significance of the model is partly in its role as a special case of 
more general Heisenberg hamiltonians, partly through its direct connection with simple 
models of statistical mechanics. 

A new way to look at the solution of this model may shed some light on possible 
extensions, and may pave the way also towards an understanding of the model in several 
dimensions. This was the motivation of the present algebraic approach in which a 
reference to fermion operators is made only to establish the connection with known 
methods, and all the relationships can be and have been established without introducing 
them. These fermion operators may not be of much help in more than one dimension. 

The hamiltonian of the X Y  model, with a constant asymmetry parameter r, can be 
written in the form 

with 

The Pauli matrices a;, os, a; are defined on the sites j of a ring, where j = 1,2, . . . , N ,  
with periodicity conditions = 07, = ay, a j ' + N  = aj'. 
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If one forms the commutator [A;", AyY], then forms the commutator of this with A;" 
and with AyY and continues the process, one is led to consider the set of operators 

For 1 = 1, the expressions (2a), (2b) give (lb), (IC). The commutator algebra of these 
operators is closed. It is reduced by introducing the symmetric and antisymmetric 
combinations 

( 2 4  

(2f  1 

AyY' = A X Y  I +Ar", 
ApY) = AXY-AY" 

I I 1  

since can be shown to commute with all Ay, A[?, Ai?'). 
In terms of the spin raising and lowering operators 

aj' = +(a; f io?) 

one can alternatively consider the quantities 
N 

for which 

(A: -)+ = A: -, ( A ; + ) +  = A;+ ,  

(A:+)+  = A ; - .  

The two sets of operators are related by the equations 

A;"+AfY = A : - + A ; + ,  

A;"-A:Y= A : + + A ; - ,  

Ai"') = -i(A,+ + - A i  -1, 
,$xy) = i(A: - - A ;  +). 

( 3 4  
( 3 f  1 
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If one defines the operator 

U = ofo;. * . o;, u2 = 1, ( 5 4  
this commutes with a; and anticommutes with o j ,  and consequently it commutes with 
the previous sets of operators, It also connects operators with index 1 and 1+N in a 
simple way, according to the relationships 

AT+; = - A :  - U ,  A;+% = - A ;  + U ,  (5b) 

A:+" = - A T + U ,  A[+% = - A ;  - U .  ( 5 4  
From the definitions one has for instance 

N 

A:+> = . . C ~ + ~ - ~ ( C J ; + , .  . . ~ ; + ~ + ~ - ~ ) o l + ~ + ~ .  ( 5 4  
j =  1 

Since a;tl. . . = U ,  and because of the periodicity conditions a;+ j + N  = a;+j, 
the relationship A:+; = - A :  - U follows from Ua;+ + OF+ j U  = 0. 

On the other hand, the sets of operators considered are periodic with period 2 N ,  that 
is they are invariant with respect to replacing 1 by 1 + 2 N .  With U' = 1, the relation- 
ships (Sb), (5c) give immediately 

( 5 4  
( 5 f  1 

A:+jN = - A:+NU = A: -, A;+:N = A ;  +, 
A - -  - A - -  A:+:N = A: +, 1 + 2 N  - 1 * 

The definitions ( 3 a H 3 d )  of these operators A ,  imply 1 > 0, but through the periodicity 
with 2N one can extend the definitions to 1 < 0, by writing 

A - ,  = A , , - , ,  A ,  = A 2 N .  

For 1 not equal to zero or to a multiple of N ,  one finds the identities 

A ? ;  = A ; + ,  AT: = A T - ,  

A!:  = - A ,  + +  , A I f -  = - A f - - .  

To show the first of these, write 
N 

A ! ;  = A Z i - I  = C of(a5+1. . . a ; + Z ~ - f - l ) a ~ ~ + ~ ~ - f ,  
j =  1 

with U 2  = a;+ . . . 
a;+, . . . o ; + ~ ~ - , - ~  = a;+1 . . . O ; + ~ ~ - I - ~ U ~  = ~ 7 5 + 2 N - p ; + 2 N - l + 1 . .  

= 1, one has 

= o;-lc+,+l . . .a; 

which gives 

$ + 2 N  

( 6 4  

where after substitution, the last factor oj:+ 2 N - f  = oj - ,  of the explicitly indicated term of 
( 6 4  has been commuted through all factors except a;-, with which it was combined 
according to $-,o~:-~ = -o,:-,. Similarly the first factor a; has been commuted 
through all the other factors and combined with a; according to of< = -of. The 
expression (6f) differs from A ;  + only through a relabelling of its terms. 
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For I = 0, one finds the identities 
N N 

A,+-  = - c +(I+a;), A , +  = &a;), 
j =  1 j =  1 

( 7 4  

A : +  = 0, A , -  = 0. (7b) 

A,+-  = A& = 1 af(U2aj+ZN)aJ:+2N. 

To obtain the expression of A: - write 
N 

(7c) 
j =  1 

With u2 = 1, and aj'$aJ; = -g?g?ay , = -1 2(1 +a;) the form ( 7 4  of A+, - follows. 
Related expressions for 1 = N are given through the relationships AN = -AoU. 

In forming the commutators of the set of operators ( 3 4 ,  ( 3 4 ,  one finds 

[ A ;  -, A: -1 = 0, 

[A;  -, A ,  '1 = 0, 

[A;  +, A: +I = 0, 

[ A ,  +, A;  '3 = 0. 

[ A ,  -, A; - 3  = 0. 

( 8 4  
(8b) 

(84  
As already mentioned, 
one has 

= i(A;f - - A ;  ') commutes with all the other elements, and 

[AIXY', +(A; - + A ;  +)] = 0, 

[AI"), A: '1 = 0, [A[?), A;  -1 = 0. 

For the remaining commutators one obtains 

[+(A; - + A ,  +), A; '3 = - A:+;< -A;-;-, 

[+(A; - + A ,  +), A ;  -1 = A;+;, + A,,, 

[A;  +, A; -1 = A:+;, + /I;+;, -A;-;, - A,:., (8h)  

which shows that the commutator algebra of A,? -, A ;  +, A: +, A; - is closed. 
For the quantities A;", A f y ,  Ay), AfY), the identities (6b), (6c)  and (4a)-(4d) give 

A?"; = A y ,  AY, = A;'", ( 9 4  

(9b) A'"';) = - A ( X Y )  A'_";) = -Ab-Y). I ,  I 

For 1 = 0, from (7aj, (7b) and (4a)44d) follows 

The commutation relations (8 f H 8 h )  give 

[(Ay -A;?), (A;" + AfY)] = 2i(AI3. - A\"_y,'.), (1 1 4  

[ ( A ~ + A ? ? ) ,  A I ~ P ) ]  = Zi((Ai':,,-Af:,.j+(A;_",.-A~",,)), ( 1 W  
[Ai?), (A;" - A Y Y ) ]  I = 2i( - (Axx I+I'+AI: , . )+(A;_", ,+AfY,' ) ) .  (1lc) 

First it will be the commutator algebra of this set of operators that will be exploited. 
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2. A new approach to solve the symmetric XY model 

For = 0, the hamiltonian (la) of the X Y  model can be written in the form 

(1 2 4  yp = - ' A + -  
2( 1 + A ; + )  

with 
N N 

The commutation relations (8a), (8b) show that the hamiltonian 2' commutes with the 
set of operators A: - + A ;  + and A: - - A ;  +. From (8f) one obtains on the other hand 

[ 2 0 ,  A: '3 = A:+; +A:-;. ( 1 2 4  

This equation permits the construction of a special set of eigenstates of Afo by looking 
for operator solutions b of the equation 

[Xo,  b] = cb. (134  

If 4 is an eigenstate of H0, then b+ will be an eigenstate too, with an eigenvalue difference 
E. A possible choice of q5 is the state $o for which CJ,:$J~ = 0, 2 ° 4 0  = 0. 

Looking for solutions b which are linear combinations 

I =  1 

of the operators A: +, the commutator [So, b] obtains the form 
2 N  2 N  

Because of AT: = - A: +, there are only N - 1 linearly independent terms in (13b), but 
a sufficient condition to satisfy equation (13a) is to choose for the coefficients tlf solutions 
of the equation system 

k l + a f + l  = E % ,  for I = 1 ,2 , .  . . , 2 N .  (144 

These equations are solved by r I  - exp( & iKl), or any linear combination 

c1 exp(iKI)+c, exp(-iKI), 

with eigenvalue 

E = 2 COS K. ( 14b) 

Since Ai,: = A: + = 0, one can take ro = 0 and choose c1, c2 to give 

1 
2N af = -sin Kl (14c) 

where the normalization factor is arbitrary. The periodicity A:+>N = A:+ of the 
operators can be reflected in the periodicity condition 

N f + 2 N  = af (144 
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of the coefficients which is satisfied if 

exp(i2NK) = 1. 

This gives 

271 
N 

K = - m  with m = 3 , 1 ,  $, 2: 

The operators 

satisfy the equations 

[so, bK] = ( 2  Cot K)b,. 

They commute with each other, 

[bK, b ~ ' ]  = 0 

and one has 

b-, = -bK. 

The sum (1%) can be inverted to give 

A: + = b, sin K l  
K 

N. 

which is summed over 2N values of K and is essentially a Fourier expansion of A: +, For 
the adjoint one can write similarly 

A; - = 1 bf, sin K1. 
K 

For integer or half-integer values of m in (14f) one has sin K(I+ N) = k sin KI, and 
for the coefficients cr,(K) - sin KI in (13b), (1%) one has accordingly a,+,,@) = +ccl(K). 
If one combines this fact with A:+> = - $ + U ,  the sum (151) obtains a projection 
operator factor 

P* = i ( l + U ) ,  ( 1 7 4  
with 

b, = - l N  (sin K1)A: *P* 
for m{half-integer 

N I = ,  integer 

In the expansion of A: '8, in terms of b,, on the other hand, only K values with half- 
integer m appear, and in the expansion of A:+P'_ only K's with integer m. 

From the equations (1 5b) follows also 

As will be seen in the following section, the spectral decomposition of X o  can also be 
obtained in terms of the special set of operators considered. 
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3. Fermion operators and pseudo-spin algebra 

Define 

U ,  =a;, U ,  = o;o;, . . . )  U j  = oZ,a;, . . . ,ai., (19a) 

where 

- 
and 

U ,  = = 1. ( 194 

In terms of these operators, the Wigner-Jordan transformation which relates fermion 
operators to of can be written in the simple form 

a ,  I = at 1 U .  J - 1 ’  aJ = U .  1 - 1  0:. J ( 2 0 4  

The creation operators aj and annihilation operators uf satisfy fermion anti-commuta- 
tion relations. 

One can also define 

a j + N  = aju, = Uaf, (20b) 

a j + 2 N  = a j ,  = uf .  (204 

so that 

The operators (3a)-(3d) can be expressed in terms of a j ,  a! as bilinear expressions 

Though a reference to the fermion operators makes some aspects of the algebra more 
transparent, the set of operators A: -, A; +, A: +, A; - define a much smaller subalgebra 
than the algebra of fermion creation and annihilation operators and may be still useful 
in problems where an introduction of fermion operators is no longer advisable. 

If one wants to refer to Fourier transforms a, of the fermion operators with the 
usual normalization given by 

1 
aj = exp( :) N”z z’ aK exp( - iKj) 

in the subspaces 9* = i(1 k U),  where E; stands for a corresponding summation over 
half-integer or integer K values, one has to substitute (22a) in operator expressions 
with a factor P*. With the expression (21b) of A: + one obtains 

A: +9* = - i 1’ E’ exp( - iK’I) exp[ - i(K + K ’ ) j ]  aKaK. 
K K‘  1 (226) 

= - i E’ exp(iKI)a,a-, . 
K 

The last expression results by writing for the parenthesis in the double sum 
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and summing with respect to K'. If instead one first performs the summation with 
respect to K (and then omits the primes), the result is 

A: +9* = i E' exp( - iKl)a,a-, 
K 

In averaging the two expressions one can write sin Kl  for the coefficients. With 
9+ +9- = 1, and in introducing the pair operators 

one has also 

A: + = E b, sin Kl, 
K 

and similarly 

A; - = 1 bf, sin Kl 

which are the same expressions as (16a), (16b). 
With the help of the number operators 

K 

nK = aKafC 

one can write similar expressions for A: -, A;  +. One has 

A : -  = -Cexp(-iKl)n,, K A ; +  = Cexp(-iKI)(l-n,), K (23c) 

(234 A: + = i 1 exp( - iKl)bK, A; - = i 2 exp( -iKobf,. 
K K 

The sum and difference of the two expressions (23c) can be written in the form 

A T - + A ; +  = EmKCOSKI 

i(A: - -A; +) = 1 E, sin K1 
K 

K 

with 

mK = l-nK-n-., mK = m - K ,  
- - - m, = n,-n-,, mK = - m - K .  

The expressions for A: +, A; - can be inverted to obtain (15a) and its adjoint for 
bK, bk, whereas from (24a), (24b) one obtains 

Through these relationships the commutator algebra of the operators A: -, A; +, 
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A:', A ,  - is reduced to irreducible parts b K ,  b k ,  mK and m K ,  any of which commutes 
with any operator b,. , bk. ,  mKt and iEKr for K # f K'. TI, commutes with bK, bk ,  m K ,  
as can be seen from the expression (25b) and the previous commutation relations. 

At this stage, however, there is no need to restrict attention to the commutator 
algebra. For b,, bk,  n K ,  n - ,  one has the simple operator products 

The operator 

P K  = n K n - K + ( l - n K ) ( l - n - K )  ( 2 7 4  

is a projection operator, 

P i  = P K ,  

and one has 

m i  = P K ,  

bKbf, + bkbK = PK. 

whereas from (26a), (26b) one obtains 

bKmK = bK, 

m,bf, = bf, , 

mKbK = - bK, 

bimK = - b i .  

The commutation relations that follow from (28a), (28b) and (26c) are 

[ m ~ ,  b ~ ]  = - 2 b ~ ,  

[bk,  b ~ ]  = mK 9 

[mK 5 bhl = 2bf, 9 

which are the commutation relations of pseudo-spin operators. 
Because of j( 1 + U)) (  1 - U )  = 0, the product of any operator b,, b f ,  , m,, E, with 

an operator b,., b i , ,  m K s ,  EiK, is zero if K = (2n/N)m corresponds to an integer m and 
K' to a half-integer m'. 

With the expression (12a) of the hamiltonian of the symmetric X Y  model, and the 
decomposition (24a), one can write 

This expression is equivalent to the spectral decomposition of Xo, and the eigenvalues 
can be read off in a simple way. The operators m K = O ,  mK=* appear only once in the 
sum (29a), the other mK twice because of mK = m - K .  

If one wants to give a complete set of eigenvectors of A?', one has to refer to operator 
products of the form a K ,  . , . aK, .  The projection operators P K I , , , K ,  of these states can 
be expressed, however, with elements of the subalgebra and are of the form 
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They commute with Ho, and satisfy equations of the form 

~ O o p ~ , . . , K n  = EK~...K~PK~...K~' (294 

where the eigenvalues E ~ , . . , ~ , ,  are given by the expression (29a). 
In referring to these projection operators and determining energy values, it is not 

only the commutator algebra of A: -, A; +, A +  I + , A; - that is referred to but the full 
algebra of these quantities introduced through their operator products. After a reduction 
to the quantities m K ,  f i K ,  b,, bf, with the help of the commutator algebra, the operations 
within this algebra are, however, rather simple. 

4. Asymmetric XY model 

The hamiltonian (la) of the asymmetric X Y  model can be written in the form 

.e = - ) [ ( A :  - + A ;  +)+r(A:  + S A ;  31. (304 

The eigenvalues and special pair solutions can be determined in j space by similar 
commutator methods as for r = 0. It is simpler, however, to use directly the decom- 
positions (24a), (16a), (16b) and write 

with 

Because of mK = m - K ,  bK = -b-K,  vK = v - ~ ,  p K  = -pL-K one has XK = 3"-K, and 
for K # 0, the terms of (30b) are pairwise the same which leads to a cancellation of 
the factor 3. 

The terms XK of Y? commute, and each can be diagonalized by writing 

= (vi (310) 

and introducing 

which represents a simple rotation of the pseudo-spin operators. In the same way as 
m K , f i K  are related to the number operators n K , n - K ,  the operators dK,SK define 
NK, JLK through the equations 
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These satisfy Jfi = JfK, .AftK = 
One has 

and are fermion quasi-particle number operators. 

B i  = 0, (Bh)2 = 0, ( 3 2 4  

B,Bf, + B ~ B ,  = P K ,  (32b) 

A; = PK, ( 3 2 4  

BKAK = BK, AKBK = - BK, ( 3 3 4  

A K  Bk = Bf, , B'M K' K = -Bf,  (33b) 

[ .MKK,  B K I  = - 2 B K ,  [ A K ,  Bk] = 2Bk ( 3 3 4  

[BL, BK]  = .AK. ( 3 3 4  

31°K = E K A K .  ( 3 4 4  

and the relationships (28a)-(28d) are transformed into 

and 

According to ( ~ O C ) ,  (31a)-(31c) the term PK of the hamiltonian can be written as 

This gives commutator equations 

[H,  BK] = ~ E K B K ,  

[X, BK, . . . BK,] = 

and gives eigenstates B,, . . . B,,40 in the subspace P- in which for $o one has 

B i 4 0  = 0 

31"40 = WO40 

with 
W - - ' C ' E  

0 -  2 K '  
K 

( 3 5 4  

The form (30b), ( 3 4 4  of the hamiltonian is equivalent to its spectral decomposition 
in terms of commuting projection operators. In order to obtain it there is no need to 
introduce the fermion quasi-particle operators t K ,  (Y  given by the transformation 

and by the adjoint equations. The relationships 

BK = ( K t - K ,  Bf ,  = tt-~tk, ( 3 6 4  

MK = < K t L ?  ( 3 6 4  

make the content of the algebraic rules (32a)-(32c), (33a)-(33d) nonetheless more 
transparent. The construction of a complete set of eigenvectors of the hamiltonian 
would have to refer to products t K 1 . .  . tK ,  of these quasi-particle operators. The 
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projection operators of the eigenstates can, however, be expressed in terms of the 
subalgebra considered, and are of the form 

5. Transfer matrix of the Ising model 

The partition function of the two-dimensional Ising model (Onsager 1944, Newel1 
and Montroll 1953, Schultz et a! 1964) in the absence of a magnetic field, can be obtained 
by determining the largest eigenvalue of the transfer matrix 

V = v;”V,v;” (384 
where one can write 

l N \  

VI = Cexp H a; , 
l - j = l  J 

j =  I 

with 

C = (2 sinh 2H)N’2. (384 

Here H = J/kT, H’ = J’/kT where J ,  J’ are the coupling constants of the Ising model, 
k is Boltzmann’s constant, T the temperature and R is determined by the equation 
sinh 2H sinh 2A = 1. 

With the notation (loa) and (lb), one can write 

V, = c exp( - ~HAF) ,  (384  

V2 = exp(2H’A;”). (38f) 

Apart from factors and notation, Onsager’s starting point is to form the commutator 
algebra generated by A”,” and A;”, and in this way he obtains the operators A;” and 
Aixy). The quantities AyY and Aixy) of the more systematic treatment of spin operators 
do not appear in his work, but according to the relationship (94 the AfY can be obtained 
from the quantities A;”. The set Aixy) is needed here only to construct the projection 
operators of the eigenstates. In reducing the commutator or Lie algebra, Onsager 
arrives at pseudo-spin operators expressible in terms of m K ,  b,, b i .  

= AgY and with the relationships (4a), (24a) one can 
write 

According to (loa) one has 

2 A r  = c m K .  
K 

At the same time, with (4a), (4b), (24a), (16a) and (16b) one has 

2Af” = (mK cos K + (b, + bZ;) sin K ) .  
K 

This decomposes the transfer matrix into commuting factors 

V ( K )  = Pi /2 (K)V2(K)P:12(K) ,  

(394 



X Y  model and algebraic methods 1691 

with 
P i i Z ( K )  = exp( - Rm,), 
Vz(K)  = exp{2H‘[m, cos K+(b,+bi) sin K ] } .  (404 

The explicitly given expressions are those for K # 0, n: and for these an extra factor 
two in the exponents results from the identity of terms with K and - K  in (39a), (39b). 
In the two subspaces given by the projection operators 9+ = $(l k U) ,  the transfer 
matrix V, = Yk V is of the form 

V, = C n’ V ( K ) .  
K 

One has m i  = PK and the square of the operator factor of 2H‘ in (40c) is also equal 
to the projection operator P,. One can write (40b), (40c) accordingly as 

P i i z ( K )  = (1 - P,) + P,(cosh R - m, sinh R )  
Vz(K)  = (1 - P,) + PK{ cosh 2H’ + [m, COS K + (b, + b l )  sin K ]  sinh 2H’) 

(4 1 4  

(4 1 b) 

In forming the product (40a), only the simple multiplication rules (27b)-(27d), (28a), (286) 
are to be used to obtain 

V ( K )  = (~-PK)+PK[~K+CO,~,  + f i ~ ( b ~ + b i ) ]  (424 

C, = - sinh 2R cosh 2H‘+ cosh 2A sinh 2 H  cos K ,  (42b) 

P K  = sinh 2H‘sin K ,  (424 

p ,  = cosh 2E? cosh 2H’- sinh 2A sinh 2H‘ cos K .  (424  

with 

As in (31a), (31b), one can write 

E, = (C:+p;)”z 

A ‘ K  A f i K  cos 6, = r ,  sin 6, = - 
E ,  E ,  

and perform a transformation (3 1c)-(3 If) which results in 

V ( K )  = (1 - P,) + P K ( F K  + &A,). (434 

Because of the identity p i  - 
write 

= 1, which follows from the definitions, one can also 

P K  = cosh E K ,  E ,  = -sinh E, (434 

V ( K )  = (1 - P,) + PK exp( - E,A,) = exp( - E&?’,). 

and 

(434 

The simple form of the transfer matrix obtained from (43c) or (43e) is equivalent to its 
spectral decomposition in terms of projection operators of the form (37). 

Onsager’s method can be seen in this way to involve only rather elementary con- 
siderations. The close connection with the method of Schultz et al is evident from the 
previous discussion of the relationship between fermion operators and pseudo-spin 
algebra. The presentation given here is strongly based on their insights concerning the 
connection of the diagonalization of V with the quasi-particle transformation. 



1692 D K Jha and J G Valatin 

References 

Katsura S 1962 Phys. Reo. 127 1508-18 
Lieb E H, Schultz T D and Mattis D C 1961 Ann. Phys., N Y  16 407-66 
Newell G F and Montroll E W 1953 Rev. mod. Phys. 25 353-89 
Onsager L 1944 Phys. Rev. 65 11749 
Schultz T D, Mattis D C and Lieb E H 1964 Rev. mod. Phys. 36 85671 


